American Orthopaedic Foot and Ankle Society Annual Meeting All-in-person Attendance Results in Immense Carbon Expenditure

Professional society conferences are integral to the medical profession. However, airline travel is a major contributor to greenhouse gas production, and the environmental impact of in-person attendance at an orthopaedic conference has yet to be described. With growing concern about the climate cris...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical orthopaedics and related research 2023-12, Vol.481 (12), p.2469-2480
Hauptverfasser: Parker, Emily B., Bluman, Adair, Pruneski, James, Soens, William, Bernstein, Aaron, Smith, Jeremy T., Bluman, Eric M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Professional society conferences are integral to the medical profession. However, airline travel is a major contributor to greenhouse gas production, and the environmental impact of in-person attendance at an orthopaedic conference has yet to be described. With growing concern about the climate crisis, we sought to quantify the carbon footprint of in-person attendance to help potential attendees more consciously consider in-person attendance, inform strategies to minimize greenhouse gas emissions during travel to annual meetings, and increase awareness about and momentum for efforts in orthopaedic surgery to reduce the carbon footprint of society conferences. (1) What was the magnitude of greenhouse gas production resulting from all-in-person 2019 American Orthopaedic Foot and Ankle Society (AOFAS) annual meeting attendance in Chicago, IL, USA? (2) What was the magnitude of greenhouse gas production resulting from the all-virtual 2020 AOFAS annual meeting, and how does it compare with the 2019 AOFAS annual meeting carbon footprint? (3) To what extent could an alternative in-person meeting model with four or seven hubs decrease greenhouse gas production resulting from round-trip air travel compared with the 2019 AOFAS annual meeting? A list of the postal codes and countries of all 1271 registered participants attending the four-day 2019 AOFAS annual meeting in Chicago, IL, USA, was obtained from AOFAS headquarters. The 2019 conference was chosen because it was the last pre-COVID meeting and thus attendance was more likely to resemble that at prepandemic in-person conferences than more recent meetings because of pandemic travel restrictions. We estimated carbon dioxide-equivalent (CO2e) production from round-trip air travel using a publicly available internet-based calculator (Myclimate: https://co2.myclimate.org/en/flight_calculators/new). Emissions produced by the conference venue, car travel, and hotel stays were estimated using published Environmental Protection Agency emission factors. To estimate emissions produced by the all-virtual 2020 AOFAS annual meeting (assuming an equal number of attendees as in 2019), we used the framework published by Faber and summed estimated network data transfer emissions, personal computer and monitor emissions, and server-related emissions. Using the 2019 registrant list, we modeled four-hub and seven-hub in-person meeting alternatives to determine potential decreased round-trip air travel greenhouse gas production. Mee
ISSN:0009-921X
1528-1132
DOI:10.1097/CORR.0000000000002764