Calpain-3 not only proteolyzes calpain-1 and -2 but also is a substrate for calpain-1 and -2

Calpain is an intracellular cysteine protease that cleaves its specific substrates in a limited region to modulate cellular function. Calpain-1 (C1) and calpain-2 (C2) are ubiquitously expressed in mammalian cells, but calpain-3 (C3) is a skeletal muscle-specific type. In the course of calpain activ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biochemistry (Tokyo) 2023-11, Vol.174 (5), p.421-431
Hauptverfasser: Ojima, Koichi, Hata, Shoji, Shinkai-Ouchi, Fumiko, Ono, Yasuko, Muroya, Susumu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Calpain is an intracellular cysteine protease that cleaves its specific substrates in a limited region to modulate cellular function. Calpain-1 (C1) and calpain-2 (C2) are ubiquitously expressed in mammalian cells, but calpain-3 (C3) is a skeletal muscle-specific type. In the course of calpain activation, the N-terminal regions of all three isoforms are clipped off in an intramolecular or intermolecular fashion. C1 proteolyzes C2 to promote further proteolysis, but C2 proteolyzes C1 to suspend C1 proteolysis, indicating the presence of C1-C2 reciprocal proteolysis. However, whether C3 is involved in the calpain proteolysis network is unclear. To address this, we examined whether GFP-tagged C3:C129S (GFP-C3:CS), an inactive protease form of C3, was a substrate for C1 or C2 in HEK cells. Intriguingly, the N-terminal region of C3:CS was cleaved by C1 and C2 at the site identical to that of the C3 autoproteolysis site. Furthermore, the N-terminal clipping of C3:CS by C1 and C2 was observed in mouse skeletal muscle lysates. Meanwhile, C3 preferentially cleaved the N-terminus of C1 over that of C2, and the sizes of these cleaved proteins were identical to their autoproteolysis forms. Our findings suggest an elaborate inter-calpain network to prime and suppress proteolysis of other calpains.
ISSN:0021-924X
1756-2651
DOI:10.1093/jb/mvad057