Symmetric functions and the Vandermonde matrix

This work deduces the lower and the upper triangular factors of the inverse of the Vandermonde matrix using symmetric functions and combinatorial identities. The L and U matrices are in turn factored as bidiagonal matrices. The elements of the upper triangular matrices in both the Vandermonde matrix...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2004-11, Vol.172 (1), p.49-64
Hauptverfasser: Oruç, Halil, Akmaz, Hakan K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work deduces the lower and the upper triangular factors of the inverse of the Vandermonde matrix using symmetric functions and combinatorial identities. The L and U matrices are in turn factored as bidiagonal matrices. The elements of the upper triangular matrices in both the Vandermonde matrix and its inverse are obtained recursively. The particular value x i =1+ q+⋯+ q i−1 in the indeterminates of the Vandermonde matrix is investigated and it leads to q-binomial and q-Stirling matrices. It is also shown that q-Stirling matrices may be obtained from the Pascal matrix.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2004.01.032