Symmetric functions and the Vandermonde matrix
This work deduces the lower and the upper triangular factors of the inverse of the Vandermonde matrix using symmetric functions and combinatorial identities. The L and U matrices are in turn factored as bidiagonal matrices. The elements of the upper triangular matrices in both the Vandermonde matrix...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2004-11, Vol.172 (1), p.49-64 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work deduces the lower and the upper triangular factors of the inverse of the Vandermonde matrix using symmetric functions and combinatorial identities. The
L and
U matrices are in turn factored as bidiagonal matrices. The elements of the upper triangular matrices in both the Vandermonde matrix and its inverse are obtained recursively. The particular value
x
i
=1+
q+⋯+
q
i−1
in the indeterminates of the Vandermonde matrix is investigated and it leads to
q-binomial and
q-Stirling matrices. It is also shown that
q-Stirling matrices may be obtained from the Pascal matrix. |
---|---|
ISSN: | 0377-0427 1879-1778 |
DOI: | 10.1016/j.cam.2004.01.032 |