Single Grid Error Estimation Using Error Transport Equation
This paper presents an approach to quantify the discretization error as well as other errors related to mesh size using the error transport equation (ETE) technique on a single grid computation. The goal is to develop a generalized algorithm that can be used in conjunction with computational fluid d...
Gespeichert in:
Veröffentlicht in: | Journal of fluids engineering 2004-09, Vol.126 (5), p.778-790 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents an approach to quantify the discretization error as well as other errors related to mesh size using the error transport equation (ETE) technique on a single grid computation. The goal is to develop a generalized algorithm that can be used in conjunction with computational fluid dynamics (CFD) codes to quantify the discretization error in a selected process variable. The focus is on applications where the conservation equations are solved for primitive variables, such as velocity, temperature and concentration, using finite difference and/or finite volume methods. An error transport equation (ETE) is formulated. A generalized source term for the ETE is proposed based on the Taylor series expansion and accessible influence coefficients in the discretized equation. Representative examples, i.e., one-dimensional convection diffusion equation, two-dimensional Poisson equation, two-dimensional convection diffusion equation, and non-linear one-dimensional Burger’s equation are presented to verify this method and elucidate its properties. Discussions are provided to address the significance and possible potential applications of this method to Navier-Stokes solvers. |
---|---|
ISSN: | 0098-2202 1528-901X |
DOI: | 10.1115/1.1792254 |