An elliptic incarnation of the Bailey chain

For the first time a Bailey chain with all entries composed out of the Jacobi theta functions is constructed. This is an elliptic extension of the WP (well-poised) Bailey chain of Andrews and it generates an infinite sequence of identities for theta hypergeometric series. As a particular example, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Mathematics Research Notices 2002, Vol.2002 (37), p.1945-1977
1. Verfasser: Spiridonov, V P
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For the first time a Bailey chain with all entries composed out of the Jacobi theta functions is constructed. This is an elliptic extension of the WP (well-poised) Bailey chain of Andrews and it generates an infinite sequence of identities for theta hypergeometric series. As a particular example, we obtained a new proof of the Frenkel-Turaev elliptic analogue of the Bailey transformation for a terminating 10Φ9 basic hypergeometric series. An elliptic generalization of the Andrews-Berkovich 10Φ9 → 12Φ11 transformation formula is derived by employing an elliptic extension of a Bressoud's Bailey pair.
ISSN:1073-7928
1687-1197
1687-0247
DOI:10.1155/S1073792802205127