Predicting new drug indications based on double variational autoencoders

Experimental drug development is costly, complex, and time-consuming, and the number of drugs that have been put into application treatment is small. The identification of drug-disease correlations can provide important information for drug discovery and drug repurposing. Computational drug repurpos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2023-09, Vol.164, p.107261-107261, Article 107261
Hauptverfasser: Huang, Zhaoyang, Chen, Shengjian, Yu, Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Experimental drug development is costly, complex, and time-consuming, and the number of drugs that have been put into application treatment is small. The identification of drug-disease correlations can provide important information for drug discovery and drug repurposing. Computational drug repurposing is an important and effective method that can be used to determine novel treatments for diseases. In recent years, an increasing number of large databases have been utilized for biological data research, particularly in the fields of drugs and diseases. Consequently, researchers have begun to explore the application of deep neural networks in biological data development. One particularly promising method for unsupervised learning is the deep generative model, with the variational autoencoder (VAE) being among the mainstream models. Here, we propose a drug indication prediction algorithm called DIDVAE (predicting new drug indications based on double variational autoencoders), which generates new data by learning the latent variable distribution of known data to achieve the goal of predicting drug-disease associations. In the experiment, we compared the DIDVAE algorithm with the BBNR, DrugNet, MBiRW and DRRS algorithms on a unified dataset. The comprehensive experimental results show that, compared with these prediction algorithms, the DIDVAE algorithm provides an overall improved prediction. In addition, further analysis and verification of the predicted unknown drug-disease association also proved the practicality of the method. •We propose a drug indication prediction algorithm called DIDVAE (predicting new drug indications based on double variational autoencoders).•DIDVAE significantly reduce the impact of noise and missing data on prediction results as a result of its powerful learning ability.•The results show that, compared with other prediction algorithms, the DIDVAE algorithm provides an overall improved prediction.
ISSN:0010-4825
1879-0534
DOI:10.1016/j.compbiomed.2023.107261