Stirred discs from polycaprolactone nanofibers highly doped with graphene for straightforward preconcentration of pollutants in environmental waters

A novel sorbent for solid phase extraction (SPE) based on hybrid nanofibrous polycaprolactone containing graphene nanoparticles has been prepared. The preparation of hybrid polymer nanofibers with a very high 1:1 polymer/graphene ratio was achieved for the first time using alternating current electr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Talanta (Oxford) 2024-01, Vol.266 (Pt 1), p.124975-124975, Article 124975
Hauptverfasser: Lhotská, Ivona, Háková, Martina, Erben, Jakub, Chvojka, Jiri, Švec, František, Šatínský, Dalibor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel sorbent for solid phase extraction (SPE) based on hybrid nanofibrous polycaprolactone containing graphene nanoparticles has been prepared. The preparation of hybrid polymer nanofibers with a very high 1:1 polymer/graphene ratio was achieved for the first time using alternating current electrospinning. The final appearance of these nanofibers was a thick porous layer that was cut into the shape of easy-to-handle extraction discs. Based on the preliminary study in which the graphene content varied, 30% graphene-doped nanofibers (w/w) exhibited the highest recoveries and enabled a significant increase in the retention of analytes, 2–25 times in comparison to PCL. The incorporation of graphene resulted in a higher surface area of 12 g/m2 compared to 2 g/m2 determined for the native polycaprolactone (PCL) nanofibers. This unique material was applied for a simple stirred disc sorptive extraction and preconcentration of trace levels of emerging organic environmental contaminants, bisphenols A, AF, AP, C, S, Z, 3-chlorophenol, and pesticides fenoxycarb, deltamethrin, and kadethrin from surface waters prior to HPLC-DAD determination. This was accomplished by stirring the unsupported nanofiber disc in a large-volume sample with RSD of five extractions of 3–15%. Recoveries yielded 87–120%, except 52% for bisphenol S due to its high polarity. Optimization of the extraction procedure included conditioning, sample volume, extraction time, and elution solvent. Our novel desorption procedure carried out in a vial used for the direct injection into the HPLC system significantly reduced sample handling and minimized potential human error. [Display omitted] •Stirred disk sorptive extraction using rich graphene-doped nanofibers was optimized.•Uniquely high amounts of up to 50% graphene were incorporated into PCL nanofibers.•Retention of model organic pollutants increased with the increasing graphene content.•Direct in-vial desorption without evaporation/reconstitution minimizes risk of error.•Extraction excels in the minimal number of steps, solvent volume, and no plastic waste.
ISSN:0039-9140
1873-3573
DOI:10.1016/j.talanta.2023.124975