Influence of catheter position on estimated strain in intravascular elastography

In elastography, an erroneous strain estimate is obtained when the radial strain and the probing ultrasound beam are not properly aligned: the "strain projection artifact". In practice, an angle between the strain and the ultrasound beam will be present in most of the cases due to inhomoge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 1999, Vol.46 (3), p.616-625
Hauptverfasser: De Korte, C.L., Cespedes, E.I., Van Der Steen, A.F.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In elastography, an erroneous strain estimate is obtained when the radial strain and the probing ultrasound beam are not properly aligned: the "strain projection artifact". In practice, an angle between the strain and the ultrasound beam will be present in most of the cases due to inhomogeneities or nonuniform compression. In this study, a theoretical function describing the strain projection artifact is derived as a function of the angle between the radial strain and the ultrasound beam. Two main factors for an angle between strain and ultrasound beam in intravascular elastographic experiments are eccentricity and tilt of the transducer. The theoretical functions describing these errors are corroborated with strain estimates from an experiment with a circular, homogeneous gel-based vessel phantom. Comparison between the theoretical functions and the experimental results reveals that the strain projection artifact is well described by the theoretical findings. As a result, the experimental data can be corrected for this artifact. The corrected elastograms reveal that correct strain estimates are obtained when the eccentricity of the intravascular catheter is less than 63%. An "off-the-wall" device may be required to advance intravascular elastography to in vivo implementation.
ISSN:0885-3010
1525-8955
DOI:10.1109/58.764848