Analysis of stochastic gradient tracking of time-varying polynomial Wiener systems

This paper presents analytical and Monte Carlo results for a stochastic gradient adaptive scheme that tracks a time-varying polynomial Wiener (1958) system [i.e., a linear time-invariant (LTI) filter with memory followed by a time-varying memoryless polynomial nonlinearity]. The adaptive scheme cons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2000-06, Vol.48 (6), p.1676-1686
Hauptverfasser: Bershad, N.J., Celka, P., Vesin, J.-M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1686
container_issue 6
container_start_page 1676
container_title IEEE transactions on signal processing
container_volume 48
creator Bershad, N.J.
Celka, P.
Vesin, J.-M.
description This paper presents analytical and Monte Carlo results for a stochastic gradient adaptive scheme that tracks a time-varying polynomial Wiener (1958) system [i.e., a linear time-invariant (LTI) filter with memory followed by a time-varying memoryless polynomial nonlinearity]. The adaptive scheme consists of two phases: (1) estimation of the LTI memory using the LMS algorithm and (2) tracking the time-varying polynomial-type nonlinearity using a second coupled gradient search for the polynomial coefficients. The time-varying polynomial nonlinearity causes a time-varying scaling for the optimum Wiener filter for Phase 1. These time variations are removed for Phase 2 using a novel coupling scheme to Phase 1. The analysis for Gaussian data includes recursions for the mean behavior of the LMS algorithm for estimating and tracking the optimum Wiener filter for Phase 1 for several different time-varying polynomial nonlinearities and recursions for the mean behavior of the stochastic gradient algorithm for Phase 2. The polynomial coefficients are shown to be accurately tracked. Monte Carlo simulations confirm the theoretical predictions and support the underlying statistical assumptions.
doi_str_mv 10.1109/78.845925
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28416042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>845925</ieee_id><sourcerecordid>27593839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-b2fdf714b38959187a0352c9c095292ec3c8bb51f914fd67e9f66ce333b26e7d3</originalsourceid><addsrcrecordid>eNqF0UtLxDAQAOAgCq6rB6-eigfRQ9ekSZrMcVl8wYIgit5KmqZr1j7WJCv039vSxYMHPc0M8zEDMwidEjwjBMO1kDPJOCR8D00IMBJjJtL9PsecxlyKt0N05P0aY8IYpBP0NG9U1Xnro7aMfGj1u_LB6mjlVGFNE6LglP6wzWroB1ub-Eu5bqg3bdU1bW1VFb320rjIdz6Y2h-jg1JV3pzs4hS93N48L-7j5ePdw2K-jDXDNMR5UhalICynEjgQKRSmPNGgMfAEEqOplnnOSQmElUUqDJRpqg2lNE9SIwo6RRfj3I1rP7fGh6y2XpuqUo1ptz5LJCMpZsn_UHCgkkIPL_-EJBWEMs5B9vT8F123W9ff0mdSMikB8LD4akTatd47U2YbZ-v-fhnB2fCuTMhsfFdvz0ZrjTE_btf8BrPUjzQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884889902</pqid></control><display><type>article</type><title>Analysis of stochastic gradient tracking of time-varying polynomial Wiener systems</title><source>IEEE Electronic Library (IEL)</source><creator>Bershad, N.J. ; Celka, P. ; Vesin, J.-M.</creator><creatorcontrib>Bershad, N.J. ; Celka, P. ; Vesin, J.-M.</creatorcontrib><description>This paper presents analytical and Monte Carlo results for a stochastic gradient adaptive scheme that tracks a time-varying polynomial Wiener (1958) system [i.e., a linear time-invariant (LTI) filter with memory followed by a time-varying memoryless polynomial nonlinearity]. The adaptive scheme consists of two phases: (1) estimation of the LTI memory using the LMS algorithm and (2) tracking the time-varying polynomial-type nonlinearity using a second coupled gradient search for the polynomial coefficients. The time-varying polynomial nonlinearity causes a time-varying scaling for the optimum Wiener filter for Phase 1. These time variations are removed for Phase 2 using a novel coupling scheme to Phase 1. The analysis for Gaussian data includes recursions for the mean behavior of the LMS algorithm for estimating and tracking the optimum Wiener filter for Phase 1 for several different time-varying polynomial nonlinearities and recursions for the mean behavior of the stochastic gradient algorithm for Phase 2. The polynomial coefficients are shown to be accurately tracked. Monte Carlo simulations confirm the theoretical predictions and support the underlying statistical assumptions.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/78.845925</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive filters ; Algorithms ; Computer simulation ; Economic models ; Least squares approximation ; Monte Carlo methods ; Nonlinear filters ; Nonlinearity ; Optimization ; Phase estimation ; Polynomials ; Recursion ; Stochastic processes ; Stochastic systems ; Stochasticity ; Studies ; Time varying systems ; Tracking ; Wiener filter</subject><ispartof>IEEE transactions on signal processing, 2000-06, Vol.48 (6), p.1676-1686</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-b2fdf714b38959187a0352c9c095292ec3c8bb51f914fd67e9f66ce333b26e7d3</citedby><cites>FETCH-LOGICAL-c403t-b2fdf714b38959187a0352c9c095292ec3c8bb51f914fd67e9f66ce333b26e7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/845925$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/845925$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bershad, N.J.</creatorcontrib><creatorcontrib>Celka, P.</creatorcontrib><creatorcontrib>Vesin, J.-M.</creatorcontrib><title>Analysis of stochastic gradient tracking of time-varying polynomial Wiener systems</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This paper presents analytical and Monte Carlo results for a stochastic gradient adaptive scheme that tracks a time-varying polynomial Wiener (1958) system [i.e., a linear time-invariant (LTI) filter with memory followed by a time-varying memoryless polynomial nonlinearity]. The adaptive scheme consists of two phases: (1) estimation of the LTI memory using the LMS algorithm and (2) tracking the time-varying polynomial-type nonlinearity using a second coupled gradient search for the polynomial coefficients. The time-varying polynomial nonlinearity causes a time-varying scaling for the optimum Wiener filter for Phase 1. These time variations are removed for Phase 2 using a novel coupling scheme to Phase 1. The analysis for Gaussian data includes recursions for the mean behavior of the LMS algorithm for estimating and tracking the optimum Wiener filter for Phase 1 for several different time-varying polynomial nonlinearities and recursions for the mean behavior of the stochastic gradient algorithm for Phase 2. The polynomial coefficients are shown to be accurately tracked. Monte Carlo simulations confirm the theoretical predictions and support the underlying statistical assumptions.</description><subject>Adaptive filters</subject><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Economic models</subject><subject>Least squares approximation</subject><subject>Monte Carlo methods</subject><subject>Nonlinear filters</subject><subject>Nonlinearity</subject><subject>Optimization</subject><subject>Phase estimation</subject><subject>Polynomials</subject><subject>Recursion</subject><subject>Stochastic processes</subject><subject>Stochastic systems</subject><subject>Stochasticity</subject><subject>Studies</subject><subject>Time varying systems</subject><subject>Tracking</subject><subject>Wiener filter</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0UtLxDAQAOAgCq6rB6-eigfRQ9ekSZrMcVl8wYIgit5KmqZr1j7WJCv039vSxYMHPc0M8zEDMwidEjwjBMO1kDPJOCR8D00IMBJjJtL9PsecxlyKt0N05P0aY8IYpBP0NG9U1Xnro7aMfGj1u_LB6mjlVGFNE6LglP6wzWroB1ub-Eu5bqg3bdU1bW1VFb320rjIdz6Y2h-jg1JV3pzs4hS93N48L-7j5ePdw2K-jDXDNMR5UhalICynEjgQKRSmPNGgMfAEEqOplnnOSQmElUUqDJRpqg2lNE9SIwo6RRfj3I1rP7fGh6y2XpuqUo1ptz5LJCMpZsn_UHCgkkIPL_-EJBWEMs5B9vT8F123W9ff0mdSMikB8LD4akTatd47U2YbZ-v-fhnB2fCuTMhsfFdvz0ZrjTE_btf8BrPUjzQ</recordid><startdate>20000601</startdate><enddate>20000601</enddate><creator>Bershad, N.J.</creator><creator>Celka, P.</creator><creator>Vesin, J.-M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20000601</creationdate><title>Analysis of stochastic gradient tracking of time-varying polynomial Wiener systems</title><author>Bershad, N.J. ; Celka, P. ; Vesin, J.-M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-b2fdf714b38959187a0352c9c095292ec3c8bb51f914fd67e9f66ce333b26e7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Adaptive filters</topic><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Economic models</topic><topic>Least squares approximation</topic><topic>Monte Carlo methods</topic><topic>Nonlinear filters</topic><topic>Nonlinearity</topic><topic>Optimization</topic><topic>Phase estimation</topic><topic>Polynomials</topic><topic>Recursion</topic><topic>Stochastic processes</topic><topic>Stochastic systems</topic><topic>Stochasticity</topic><topic>Studies</topic><topic>Time varying systems</topic><topic>Tracking</topic><topic>Wiener filter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bershad, N.J.</creatorcontrib><creatorcontrib>Celka, P.</creatorcontrib><creatorcontrib>Vesin, J.-M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bershad, N.J.</au><au>Celka, P.</au><au>Vesin, J.-M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of stochastic gradient tracking of time-varying polynomial Wiener systems</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2000-06-01</date><risdate>2000</risdate><volume>48</volume><issue>6</issue><spage>1676</spage><epage>1686</epage><pages>1676-1686</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This paper presents analytical and Monte Carlo results for a stochastic gradient adaptive scheme that tracks a time-varying polynomial Wiener (1958) system [i.e., a linear time-invariant (LTI) filter with memory followed by a time-varying memoryless polynomial nonlinearity]. The adaptive scheme consists of two phases: (1) estimation of the LTI memory using the LMS algorithm and (2) tracking the time-varying polynomial-type nonlinearity using a second coupled gradient search for the polynomial coefficients. The time-varying polynomial nonlinearity causes a time-varying scaling for the optimum Wiener filter for Phase 1. These time variations are removed for Phase 2 using a novel coupling scheme to Phase 1. The analysis for Gaussian data includes recursions for the mean behavior of the LMS algorithm for estimating and tracking the optimum Wiener filter for Phase 1 for several different time-varying polynomial nonlinearities and recursions for the mean behavior of the stochastic gradient algorithm for Phase 2. The polynomial coefficients are shown to be accurately tracked. Monte Carlo simulations confirm the theoretical predictions and support the underlying statistical assumptions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/78.845925</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2000-06, Vol.48 (6), p.1676-1686
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_miscellaneous_28416042
source IEEE Electronic Library (IEL)
subjects Adaptive filters
Algorithms
Computer simulation
Economic models
Least squares approximation
Monte Carlo methods
Nonlinear filters
Nonlinearity
Optimization
Phase estimation
Polynomials
Recursion
Stochastic processes
Stochastic systems
Stochasticity
Studies
Time varying systems
Tracking
Wiener filter
title Analysis of stochastic gradient tracking of time-varying polynomial Wiener systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A10%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20stochastic%20gradient%20tracking%20of%20time-varying%20polynomial%20Wiener%20systems&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Bershad,%20N.J.&rft.date=2000-06-01&rft.volume=48&rft.issue=6&rft.spage=1676&rft.epage=1686&rft.pages=1676-1686&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/78.845925&rft_dat=%3Cproquest_RIE%3E27593839%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884889902&rft_id=info:pmid/&rft_ieee_id=845925&rfr_iscdi=true