Analysis of stochastic gradient tracking of time-varying polynomial Wiener systems

This paper presents analytical and Monte Carlo results for a stochastic gradient adaptive scheme that tracks a time-varying polynomial Wiener (1958) system [i.e., a linear time-invariant (LTI) filter with memory followed by a time-varying memoryless polynomial nonlinearity]. The adaptive scheme cons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2000-06, Vol.48 (6), p.1676-1686
Hauptverfasser: Bershad, N.J., Celka, P., Vesin, J.-M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents analytical and Monte Carlo results for a stochastic gradient adaptive scheme that tracks a time-varying polynomial Wiener (1958) system [i.e., a linear time-invariant (LTI) filter with memory followed by a time-varying memoryless polynomial nonlinearity]. The adaptive scheme consists of two phases: (1) estimation of the LTI memory using the LMS algorithm and (2) tracking the time-varying polynomial-type nonlinearity using a second coupled gradient search for the polynomial coefficients. The time-varying polynomial nonlinearity causes a time-varying scaling for the optimum Wiener filter for Phase 1. These time variations are removed for Phase 2 using a novel coupling scheme to Phase 1. The analysis for Gaussian data includes recursions for the mean behavior of the LMS algorithm for estimating and tracking the optimum Wiener filter for Phase 1 for several different time-varying polynomial nonlinearities and recursions for the mean behavior of the stochastic gradient algorithm for Phase 2. The polynomial coefficients are shown to be accurately tracked. Monte Carlo simulations confirm the theoretical predictions and support the underlying statistical assumptions.
ISSN:1053-587X
1941-0476
DOI:10.1109/78.845925