Countercation Engineering of Graphene-Oxide Nanosheets for Imparting a Thermoresponsive Ability

Graphene-oxide (GO) nanosheets, which are oxidized derivatives of graphene, are regarded as promising building blocks for functional soft materials. Especially, thermoresponsive GO nanosheets have been widely employed to develop smart membranes/surfaces, hydrogel actuators, recyclable systems, and b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-08, Vol.15 (31), p.37837-37844
Hauptverfasser: Kondo, Shoma, Nishimura, Tomoki, Nishina, Yuta, Sano, Koki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Graphene-oxide (GO) nanosheets, which are oxidized derivatives of graphene, are regarded as promising building blocks for functional soft materials. Especially, thermoresponsive GO nanosheets have been widely employed to develop smart membranes/surfaces, hydrogel actuators, recyclable systems, and biomedical applications. However, current synthetic strategies to generate such thermoresponsive GO nanosheets have exclusively relied on the covalent or non-covalent modification of their surfaces with thermoresponsive polymers, such as poly­(N-isopropylacrylamide). To impart a thermoresponsive ability to GO nanosheets themselves, we focused on the countercations of the carboxy and acidic hydroxy groups on the GO nanosheets. In this study, we established a general and reliable method to synthesize GO nanosheets with target countercations and systematically investigated their effects on thermoresponsive behaviors of GO nanosheets. As a result, we discovered that GO nanosheets with Bu4N+ countercations became thermoresponsive in water without the use of any thermoresponsive polymers, inducing a reversible sol–gel transition via their self-assembly and disassembly processes. Owing to the sol–gel transition capability, the resultant dispersion can be used as a direct writing ink for constructing a three-dimensionally designable gel architecture of the GO nanosheets. Our concept of “countercation engineering” can become a new strategy for imparting a stimuli-responsive ability to various charged nanomaterials for the development of next-generation smart materials.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.3c07820