First Report of Leaf Black Spot Caused by Alternaria alternata on American Persimmons in China

American persimmons ( L.) are native to the United States. After being introduced into China, they were used as a rootstock for expanding persimmon varieties and planted in local areas due to their strong cold resistance and diverse leaf colors. In 2022, 12 plants had similar symptoms to black spot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant disease 2023-10, Vol.107 (10), p.3299
Hauptverfasser: Fan, Zhirui, Fan, Hanyue, Ding, Yu, Lv, Zhongyi, Shen, Xiaoxia, Yang, Yong, Guan, Changfei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:American persimmons ( L.) are native to the United States. After being introduced into China, they were used as a rootstock for expanding persimmon varieties and planted in local areas due to their strong cold resistance and diverse leaf colors. In 2022, 12 plants had similar symptoms to black spot disease on the leaves of 18 American persimmons introduced in the National Field Genebank for Persimmon, Yangling, Shaanxi, China (34°17'42.80″ N, 108°04'08.21″ E). Among them, severity was highest in the 'VM10' variety (almost 100%), 'VM10' is the main cultivar in Shaanxi and Henan regions of China, and the incidence of disease in the two regions ranged between 30 and 60% in 2022. Early symptoms were irregular black-brown spots, which gradually combined into large irregular lesions with a dark brown border. The leaves began to curl, crack, scorch, and abscissed. When relative humidity was high, leaves also had signs of black sporulation and became chlorotic. To isolate the causal agent, 10 symptomatic leaves were collected from 5 diseased plants in the National Field Genebank for Persimmon. The infected leaves were cut into 20 small pieces of 5 × 5 mm from the junction of the diseased and healthy tissues and surface disinfected in 75% alcohol for 15 sec, washed with sterile water and 2% NaClO for 90 sec, rinsed three times with sterile water, dried with sterile absorbent paper, and plated on potato dextrose agar (PDA) medium. After 3 days, 12 strains of fungi were isolated from the tissue by transferring the hyphal tips of the mycelium. Among them, 10 strains had similar morphological characteristics. Fungal colonies developed on the PDA medium were initially white, then gradually changed to gray-brown with neat edges and flocculent hyphae. Conidia (n=50) light brown or medium brown, obovate or pear-shaped, and 8.27 to 15.31×17.51 to 24.31 µm, with 1 to 4 transverse septa and 0 to 2 longitudinal septa. The isolates were morphologically similar to (Simmons et al. 2007). For molecular identification, the E.Z.N.A.® Fungal DNA kit (Omega Bio-Tek) was used to extract genomic DNA from 7-day-old mycelium grown on PDA medium. The internal transcribed spacers (ITS) region, translation elongation factor 1-alpha ( ), Alternaria major allergen ( ) gene, and partial RNA polymerase second largest subunit ( ) were amplified using ITS1/4 (Glass et al. 1995), EF1-728F/EF1-968R (Carbone and Kohn 1999), and Alt-4for /Alt-4rev (Hong et al., 2005) and RPB2-5F/RPB2-7CR (Liu et al. 1
ISSN:0191-2917
1943-7692
DOI:10.1094/PDIS-04-23-0810-PDN