Human nasal mucosa ectomesenchymal stem cells derived extracellular vesicles loaded omentum/chitosan composite scaffolds enhance skull defects regeneration

Engineered bone tissue that can promote osteogenic differentiation is considered an ideal substitute for materials to heal bone defects. Extracellular vesicle (EV)-based cell-free regenerative therapies represent an emerging promising alternative for bone tissue engineering. We hypothesized that EVs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2023-09, Vol.248, p.125924-125924, Article 125924
Hauptverfasser: Shi, Wentao, Gao, Yan, Wu, Yiqing, Tang, Yushi, Bian, Lu, Que, Yunduan, Lv, Long, Xu, Bai, Tang, Hong, Lu, Xiaojie, Wang, Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Engineered bone tissue that can promote osteogenic differentiation is considered an ideal substitute for materials to heal bone defects. Extracellular vesicle (EV)-based cell-free regenerative therapies represent an emerging promising alternative for bone tissue engineering. We hypothesized that EVs derived from human nasal mucosa-derived ectomesenchymal stem cells (hEMSCs) can promote bone tissue regeneration. Herein, hEMSCs were cultured with osteogenic induction medium or normal medium to generate two types of EVs. We first demonstrated that the two EVs exhibited strong potential to promote rat suture mesenchymal stem cell (SMSC) osteogenesis by transferring TG2 to SMSCs and regulating extracellular matrix (ECM) synthesis. Next, we developed a composite hydrogel made of porcine omentum and chitosan into which EVs were adsorbed to enable the effective delivery of EVs with sustained release kinetics. Implantation of the EV-loaded hydrogels in a critical-size rat cranial defect model significantly promoted bone regeneration. Therefore, we suggest that our hEMSC-derived EV-loading system can serve as a new therapeutic paradigm for promoting bone tissue regeneration in the clinic.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2023.125924