Relaxation Shortcuts through Boundary Coupling
When a hot system cools down faster than an equivalent cold one, it exhibits the Mpemba effect (ME). This counterintuitive phenomenon was observed in several systems including water, magnetic alloys, and polymers. In most experiments the system is coupled to the bath through its boundaries, but all...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2023-07, Vol.131 (1), p.017101-017101, Article 017101 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | When a hot system cools down faster than an equivalent cold one, it exhibits the Mpemba effect (ME). This counterintuitive phenomenon was observed in several systems including water, magnetic alloys, and polymers. In most experiments the system is coupled to the bath through its boundaries, but all theories so far assumed bulk coupling. Here we build a general framework to characterize anomalous relaxations through boundary coupling, and present two emblematic setups: a diffusing particle and an Ising antiferromagnet. In the latter, we show that the ME can survive even arbitrarily weak couplings. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.131.017101 |