Evaluation of PEN2-ATP6AP1 axis as an antiparasitic target for metformin based on phylogeny analysis and molecular docking
Metformin (Met), the first-line drug used in the treatment for type 2 diabetes mellitus, is effective against a variety of parasites. However, the molecular target of Met at clinical dose against various parasites remains unclear. Recently, low-dose Met (clinical dose) has been reported to directly...
Gespeichert in:
Veröffentlicht in: | Molecular and biochemical parasitology 2023-09, Vol.255, p.111580-111580, Article 111580 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Metformin (Met), the first-line drug used in the treatment for type 2 diabetes mellitus, is effective against a variety of parasites. However, the molecular target of Met at clinical dose against various parasites remains unclear. Recently, low-dose Met (clinical dose) has been reported to directly bind PEN2 (presenilin enhancer protein 2) and initiate the lysosomal glucose-sensing pathway for AMPK activation via ATP6AP1 (V-type proton ATPase subunit S1), rather than perturbing AMP/ATP levels.
To explore the possibility of PEN2-ATP6AP1 axis as a drug target of Met for the treatment of parasitic diseases, we identified and characterized orthologs of PEN2 and ATP6AP1 genes in parasites, by constructing phylogenetic trees, analyzing protein sequences and predicting interactions between Met and parasite PEN2.
The results showed that PEN2 and ATP6AP1 genes are only found together in a few of parasite species in the cestoda and nematoda groups. Indicated by molecular simulation, Met might function by interacting with PEN2 on V37/W38/E5 (Trichinella spiralis) with similar binding energy, and on F35/S39 (Caenorhabditis elegans) with higher binding energy, comparing to human PEN2. Hence, these results indicated that only the T. spiralis PEN2-ATP6AP1 axis has the potential to be the direct target of low-concentration Met. Together with contribution of host cells including immune cells in vivo, T. spiralis PEN2-ATP6AP1 axis might play roles in reducing parasite load at low-concentration Met. However, the mechanisms of low-concentration Met on other parasitic infections might be mainly achieved by regulating host cells, rather than directly targeting PEN2-ATP6AP1 axis.
These findings revealed the potential mechanisms by which Met treats various parasitic diseases, and shed new light on the development of antiparasitic drugs.
•The diabetes drug metformin (met) can impinge on PEN2 and ATP6AP1 protein function and can also have anti-parasitic effects.•In silico analysis suggests that met could dock with PEN2 in some worms, e.g., Trichinella spiralis.•Met may also impede parasitic infections by regulating host cell function. |
---|---|
ISSN: | 0166-6851 1872-9428 |
DOI: | 10.1016/j.molbiopara.2023.111580 |