Loganin reduces diabetic kidney injury by inhibiting the activation of NLRP3 inflammasome-mediated pyroptosis

Diabetic kidney disease (DKD) is an essential cause of end-stage renal disease. The ongoing inflammatory response in the proximal tubule promotes the progression of DKD. Timely and effective blockade of the inflammatory process to protect the kidney during DKD progression is a proven strategy. The p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemico-biological interactions 2023-09, Vol.382, p.110640-110640, Article 110640
Hauptverfasser: Kong, Xiangri, Zhao, Yunyun, Wang, Xingye, Yu, Yongjiang, Meng, Ying, Yan, Guanchi, Yu, Miao, Jiang, Lihong, Song, Wu, Wang, Bingmei, Wang, Xiuge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Diabetic kidney disease (DKD) is an essential cause of end-stage renal disease. The ongoing inflammatory response in the proximal tubule promotes the progression of DKD. Timely and effective blockade of the inflammatory process to protect the kidney during DKD progression is a proven strategy. The purpose of this study was to investigate the protective effect of loganin on diabetic nephropathy in vivo and in vitro and whether this effect was related to the inhibition of pyroptosis. The results indicated that loganin reduced fasting blood glucose, blood urea nitrogen and serum creatinine concentrations, and alleviated renal pathological changes in DKD mice. In parallel, loganin downregulated the expression of pyroptosis related proteins in the renal tubules of DKD mice and decreased serum levels of interleukin-1beta (IL-1β) and interleukin-18 (IL-18). Furthermore, in vitro experiments showed that loganin attenuated high glucose-induced HK-2 cell injury by reducing the expression of pyroptosis-related proteins, and cytokine levels were also decreased. These fundings were also confirmed in the polyphyllin VI (PPVI) -induced HK-2 cell pyroptosis model. Loganin reduces high glucose induced HK-2 cells pyroptosis by inhibiting reactive oxygen species (ROS) production and NOD-like receptor protein 3 (NLRP3) inflammasome activation. In conclusion, the inhibition of pyroptosis via inhibition of the NLRP3/Caspase-1/Gasdermin D (GSDMD) pathway might be an essential mechanism for loganin treatment of DKD. [Display omitted] •NLRP3 inflammasome activation plays a key role in promoting the pathogenesis of DKD.•We discovered that LGN alleviated renal pathological changes in DKD mice.•LGN reduces diabetic kidney injury by inhibiting the activation of pyroptosis.
ISSN:0009-2797
1872-7786
DOI:10.1016/j.cbi.2023.110640