A Monovalent Fab Affinity-Capture and Elution Bridging Immunoassay Overcomes Rheumatoid Factor Interference while Accurately Detecting Antidrug Antibodies
Abstract Background Rheumatoid factor (RF) consists of autoantibodies that bind the fragment crystallizable (Fc) region of human immunoglobulin G (IgG) and present in sera of rheumatoid arthritis (RA) patients. Immunoassays to detect antidrug antibodies (ADA) in RA patient samples may experience int...
Gespeichert in:
Veröffentlicht in: | The journal of applied laboratory medicine 2023-09, Vol.8 (5), p.896-908 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Background
Rheumatoid factor (RF) consists of autoantibodies that bind the fragment crystallizable (Fc) region of human immunoglobulin G (IgG) and present in sera of rheumatoid arthritis (RA) patients. Immunoassays to detect antidrug antibodies (ADA) in RA patient samples may experience interference due to RF binding and crosslinking Fc regions of the capture and detection antibody reagents. To overcome this interference, a novel Fab affinity-capture and elution (ACE)-bridging immunoassay (Fab ACE-Bridge) was developed with monovalent-recombinant Fab to avoid RF interference.
Methods
ACE and ACE-Bridge assays were developed to detect ADA against a therapeutic monoclonal antibody using samples from healthy donors, psoriasis patients, and RA patients. The performance of these assays was compared to a novel Fab ACE-Bridge assay, in which monoclonal antibody was replaced with monovalent Fab.
Results
High screening signals in the ACE and ACE-Bridge assays were detected in RA patient samples but not in samples from healthy donors or psoriasis patients. The high screening signals in RA samples did not inhibit to the expected extent in the confirmatory assay, a consistent feature of false-positive screening results. Further investigation revealed RF as the interferent affecting assay performance. Modification of the ACE-Bridge assay by using monovalent Fab eliminated RF interference while allowing for sensitive and drug-tolerant detection of authentic ADA.
Conclusions
RF interfered significantly in traditional ACE and ACE-Bridge assays. Implementation of a novel monovalent Fab ACE-Bridge assay overcame RF interference. The use of monovalent Fab is recommended for immunogenicity assays when assessing ADA in RA patient samples. |
---|---|
ISSN: | 2576-9456 2475-7241 2475-7241 |
DOI: | 10.1093/jalm/jfad035 |