Ultra-high thermal stability InAs/GaAs quantum dot lasers grown on on-axis Si (001) with a record-high continuous-wave operating temperature of 150 °C

Direct epitaxial growth of group III-V light sources with excellently thermal performance on silicon photonics chips promises low-cost, low-power-consumption, high-performance photonic integrated circuits. Here, we report on the achievement of ultra-high thermal stability 1.3 µm InAs/GaAs quantum do...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2023-07, Vol.31 (15), p.24173-24182
Hauptverfasser: Lv, Zunren, Wang, Shuai, Wang, Shenglin, Chai, Hongyu, Meng, Lei, Yang, Xiaoguang, Yang, Tao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Direct epitaxial growth of group III-V light sources with excellently thermal performance on silicon photonics chips promises low-cost, low-power-consumption, high-performance photonic integrated circuits. Here, we report on the achievement of ultra-high thermal stability 1.3 µm InAs/GaAs quantum dot (QD) lasers directly grown on an on-axis Si (001) with a record-high continuous-wave (CW) operating temperature of 150 °C. A GaAs buffer layer with a low threading dislocation density (TDD) of 4.3 × 10 cm was first deposited using an optimized three-step growth method by molecular beam epitaxy. Then, an eight-layer QD laser structure with p-type modulation doping to enhance the temperature stability of the device was subsequently grown on the low TDD Si-based GaAs buffer layer. It is shown that the QD laser exhibits the ultra-high temperature stability with a characteristic temperature T =∞ and T =∞ in the wide temperature range of 10-75 °C and 10-140 °C, respectively. Moreover, a maximum CW operating temperature of up to 150 °C and a pulsed operating temperature of up to 160 °C are achieved for the QD laser. In addition, the QD laser shows a high CW saturation power of 50 mW at 85 °C and 19 mW at 125 °C, respectively.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.494251