Structural and functional analysis of surface film on Li anode in vinylene carbonate-containing electrolyte

The lithium cycling efficiencies of the lithium anode in the ethylene carbonate (EC)-based electrolytes were improved by adding vinylene carbonate (VC) to the electrolyte. We analyzed the surface films of deposited lithium on a nickel substrate in a VC-containing electrolyte with scanning electron m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2004, Vol.151 (11), p.A1778-A1788
Hauptverfasser: OTA, Hitoshi, SAKATA, Yuuichi, OTAKE, Yumiko, SHIMA, Kunihisa, UE, Makoto, YAMAKI, Jun-Ichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The lithium cycling efficiencies of the lithium anode in the ethylene carbonate (EC)-based electrolytes were improved by adding vinylene carbonate (VC) to the electrolyte. We analyzed the surface films of deposited lithium on a nickel substrate in a VC-containing electrolyte with scanning electron microscopy, Fourier transform infrared spectroscopy, two-dimensional nuclear magnetic resonance, gel permeation chromatography, and X-ray photoelectron spectroscopy. The corresponding surface films comprise various polymeric species including poly-(vinylene carbonate) [poly-(VC)], oligomeric VC, and a ring-opened polymer of VC. Furthermore, the surface film of carbon double bonds (C = C-O) and lithium carboxylate (RCOOLi) as reduction products of VC were formed on deposited lithium. These structures of the surface film on the lithium anode were similar to those on the graphite anode. At elevated temperatures, the VC-containing electrolyte led to the formation of surface films comprising poly(VC). The VC-derived polymeric surface film, which exhibited gel-like morphology, could prevent the deleterious reaction which occurs between deposited lithium and the electrolyte, resulting in an enhanced lithium cycling efficiency.
ISSN:0013-4651
1945-7111
DOI:10.1149/1.1798411