Synthesis, formulation and evaluation of novel zinc-calcium phosphate-based adhesive resin composite cement

Three novel adhesive oligomers having carboxylic acid and methacrylate groups were synthesized, characterized and used to formulate composite bone cements with newly synthesized zinc-calcium-silicate phosphate. The optimal formulation was determined based on types of oligomer, oligomer/diluent ratio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European polymer journal 2004-08, Vol.40 (8), p.1723-1731
Hauptverfasser: Xie, Dong, Chung, IL-Doo, Wang, Guigui, Feng, Dingsong, Mays, Jimmy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Three novel adhesive oligomers having carboxylic acid and methacrylate groups were synthesized, characterized and used to formulate composite bone cements with newly synthesized zinc-calcium-silicate phosphate. The optimal formulation was determined based on types of oligomer, oligomer/diluent ratio, initiator concentration, and filler level using compressive strength (CS) and curing time (CT) as screening tools. Shrinkage, exotherm and aging of the formed composite cements were also evaluated. Results show that the experimental cement was 186% higher in CS, 16% higher in diametral tensile strength, similar in flexural strength, 56% less in exotherm and 64% less in shrinkage, as compared to conventional polymethylmethacrylate cement. The optimal concentrations for initiators were found to be 1.5% (by weight) for both benzoyl peroxide and N, N ′-dimethyl- p-toluidine. With increasing initiator concentration, diluent content and zinc oxide content in the cement formulation, CS of the cement increased but curing time decreased. Shrinkage and exotherm of the cement decreased with increasing filler level. CS was not proportional to an increase of filler level and CT increased with an increase of filler level. During aging, the cement showed an increase of strength over 24 h and then no change for over nine months. It appears that this novel cement may be a potential candidate for orthopedic restoration if its biological performance is good and the formulation is optimized.
ISSN:0014-3057
1873-1945
DOI:10.1016/j.eurpolymj.2004.03.005