Using machine learning and remote sensing to track land use/land cover changes due to armed conflict
Armed conflicts have detrimental impacts on the environment, including land systems. The prevailing understanding of the relation between Land Use/Land Cover (LULC) and armed conflict fails to fully recognize the complexity of their dynamics – a shortcoming that could undermine food security and sus...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2023-11, Vol.898, p.165600-165600, Article 165600 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Armed conflicts have detrimental impacts on the environment, including land systems. The prevailing understanding of the relation between Land Use/Land Cover (LULC) and armed conflict fails to fully recognize the complexity of their dynamics – a shortcoming that could undermine food security and sustainable land/water resources management in conflict settings. The Syrian portion of the transboundary Orontes River Basin (ORB) has been a site of violent conflict since 2013. Correspondingly, the Lebanese and Turkish portions of the ORB have seen large influxes of refugees. A major challenge in any geoscientific investigation in this region, specifically the Syrian portion, is the unavailability of directly-measured “ground truth” data. To circumvent this problem, we develop a novel methodology that combines remote sensing products, machine learning techniques and quasi-experimental statistical analysis to better understand LULC changes in the ORB between 2004 and 2022. Through analysis of the resulting annual LULC maps, we can draw several quantitative conclusions. Cropland areas decreased by 21–24 % in Syria's conflict hotspot zones after 2013, whereas a 3.4-fold increase was detected in Lebanon. The development of refugee settlements was also tracked in Lebanon and on the Syrian/Turkish borders, revealing different LULC patterns that depend on settlement dynamics. The results highlight the importance of understanding the heterogenous spatio-temporal LULC changes in conflict-affected and refugee-hosting countries. The developed methodology is a flexible, cloud-based approach that can be applied to wide variety of LULC investigations related to conflict, policy and climate.
[Display omitted]
•A novel methodology is presented to track changes in LULC for conflict zones.•Cropland areas decreased by 21 to 24 % after 2013 in the Orontes River Basin–Syria.•Policy changes in 2008 led to a shift from summer to winter crops in Syria.•Refugee settlements developed differently in Lebanon and Turkey. |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2023.165600 |