Achieving Efficient CO2 Electrolysis to CO by Local Coordination Manipulation of Nickel Single-Atom Catalysts
Selective electroreduction of CO2 to C1 feed gas provides an attractive avenue to store intermittent renewable energy. However, most of the CO2-to-CO catalysts are designed from the perspective of structural reconstruction, and it is challenging to precisely design a meaningful confining microenviro...
Gespeichert in:
Veröffentlicht in: | Nano letters 2023-08, Vol.23 (15), p.7046-7053 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Selective electroreduction of CO2 to C1 feed gas provides an attractive avenue to store intermittent renewable energy. However, most of the CO2-to-CO catalysts are designed from the perspective of structural reconstruction, and it is challenging to precisely design a meaningful confining microenvironment for active sites on the support. Herein, we report a local sulfur doping method to precisely tune the electronic structure of an isolated asymmetric nickel–nitrogen–sulfur motif (Ni1-NSC). Our Ni1-NSC catalyst presents >99% faradaic efficiency for CO2-to-CO under a high current density of −320 mA cm–2. In situ attenuated total reflection surface-enhanced infrared absorption spectroscopy and differential electrochemical mass spectrometry indicated that the asymmetric sites show a significantly weaker binding strength of *CO and a lower kinetic overpotential for CO2-to-CO. Further theoretical analysis revealed that the enhanced CO2 reduction reaction performance of Ni1-NSC was mainly due to the effectively decreased intermediate activation energy. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.3c01808 |