Quantum targeted energy transfer through machine learning tools

In quantum targeted energy transfer, bosons are transferred from a certain crystal site to an alternative one, utilizing a nonlinear resonance configuration similar to the classical targeted energy transfer. We use a computational method based on machine learning algorithms in order to investigate s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2023-06, Vol.107 (6-2), p.065301-065301, Article 065301
Hauptverfasser: Andronis, I, Arapantonis, G, Barmparis, G D, Tsironis, G P
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In quantum targeted energy transfer, bosons are transferred from a certain crystal site to an alternative one, utilizing a nonlinear resonance configuration similar to the classical targeted energy transfer. We use a computational method based on machine learning algorithms in order to investigate selectivity as well as efficiency of the quantum transfer in the context of a dimer and a trimer system. We find that our method identifies resonant quantum transfer paths that allow boson transfer in unison. The method is readily extensible to larger lattice systems involving nonlinear resonances.
ISSN:2470-0045
2470-0053
DOI:10.1103/PhysRevE.107.065301