Subdiffusion equation with fractional Caputo time derivative with respect to another function in modeling transition from ordinary subdiffusion to superdiffusion
We use a subdiffusion equation with fractional Caputo time derivative with respect to another function g (g-subdiffusion equation) to describe a smooth transition from ordinary subdiffusion to superdiffusion. Ordinary subdiffusion is described by the equation with the "ordinary" fractional...
Gespeichert in:
Veröffentlicht in: | Physical review. E 2023-06, Vol.107 (6-1), p.064103-064103, Article 064103 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We use a subdiffusion equation with fractional Caputo time derivative with respect to another function g (g-subdiffusion equation) to describe a smooth transition from ordinary subdiffusion to superdiffusion. Ordinary subdiffusion is described by the equation with the "ordinary" fractional Caputo time derivative, superdiffusion is described by the equation with a fractional Riesz-type spatial derivative. We find the function g for which the solution (Green's function, GF) to the g-subdiffusion equation takes the form of GF for ordinary subdiffusion in the limit of small time and GF for superdiffusion in the limit of long time. To solve the g-subdiffusion equation we use the g-Laplace transform method. It is shown that the scaling properties of the GF for g-subdiffusion and the GF for superdiffusion are the same in the long time limit. We conclude that for a sufficiently long time the g-subdiffusion equation describes superdiffusion well, despite a different stochastic interpretation of the processes. Then, paradoxically, a subdiffusion equation with a fractional time derivative describes superdiffusion. The superdiffusive effect is achieved here not by making anomalously long jumps by a diffusing particle, but by greatly increasing the particle jump frequency which is derived by means of the g-continuous-time random walk model. The g-subdiffusion equation is shown to be quite general, it can be used in modeling of processes in which a kind of diffusion change continuously over time. In addition, some methods used in modeling of ordinary subdiffusion processes, such as the derivation of local boundary conditions at a thin partially permeable membrane, can be used to model g-subdiffusion processes, even if this process is interpreted as superdiffusion. |
---|---|
ISSN: | 2470-0045 2470-0053 |
DOI: | 10.1103/PhysRevE.107.064103 |