Matrix models for circular ensembles
The Gibbs distribution for n particles of the Coulomb gas on the unit circle at inverse temperature β is given by Enβ(f)=(1/Zn,β)∫···∫f(eiθ1,…,eiθn)|Δ(eiθ1,…,eiθn) |β(dθ1/2π)…dθn/2π for any symmetric function f, where Δ denotes the Vandermonde determinant and Zn,β the normalization constant. We will...
Gespeichert in:
Veröffentlicht in: | International Mathematics Research Notices 2004, Vol.2004 (50), p.2665-2701 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Gibbs distribution for n particles of the Coulomb gas on the unit circle at inverse temperature β is given by Enβ(f)=(1/Zn,β)∫···∫f(eiθ1,…,eiθn)|Δ(eiθ1,…,eiθn) |β(dθ1/2π)…dθn/2π for any symmetric function f, where Δ denotes the Vandermonde determinant and Zn,β the normalization constant. We will describe an ensemble of (sparse) random matrices whose eigenvalues follow this distribution. Our approach combines elements from the theory of orthogonal polynomials on the unit circle with ideas from a recent work of Dumitriu and Edelman. In particular, we resolve a question left open by them: finding a tridiagonal model for the Jacobi ensemble. |
---|---|
ISSN: | 1073-7928 1687-1197 1687-0247 |
DOI: | 10.1155/S1073792804141597 |