Matrix models for circular ensembles

The Gibbs distribution for n particles of the Coulomb gas on the unit circle at inverse temperature β is given by Enβ(f)=(1/Zn,β)∫···∫f(eiθ1,…,eiθn)|Δ(eiθ1,…,eiθn) |β(dθ1/2π)…dθn/2π for any symmetric function f, where Δ denotes the Vandermonde determinant and Zn,β the normalization constant. We will...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Mathematics Research Notices 2004, Vol.2004 (50), p.2665-2701
Hauptverfasser: Killip, Rowan, Nenciu, Irina
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Gibbs distribution for n particles of the Coulomb gas on the unit circle at inverse temperature β is given by Enβ(f)=(1/Zn,β)∫···∫f(eiθ1,…,eiθn)|Δ(eiθ1,…,eiθn) |β(dθ1/2π)…dθn/2π for any symmetric function f, where Δ denotes the Vandermonde determinant and Zn,β the normalization constant. We will describe an ensemble of (sparse) random matrices whose eigenvalues follow this distribution. Our approach combines elements from the theory of orthogonal polynomials on the unit circle with ideas from a recent work of Dumitriu and Edelman. In particular, we resolve a question left open by them: finding a tridiagonal model for the Jacobi ensemble.
ISSN:1073-7928
1687-1197
1687-0247
DOI:10.1155/S1073792804141597