On a family of Abelian codes and their state complexities

We study Reed-Muller codes and "Berman" codes as Abelian codes. We show that the duals of Berman codes and Reed-Muller codes can be considered as belonging to the same family of Abelian codes. We also determine the minimum distance and state complexity of the duals of Berman codes. Each of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2001-01, Vol.47 (1), p.355-361
Hauptverfasser: Blackmore, T., Norton, G.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study Reed-Muller codes and "Berman" codes as Abelian codes. We show that the duals of Berman codes and Reed-Muller codes can be considered as belonging to the same family of Abelian codes. We also determine the minimum distance and state complexity of the duals of Berman codes. Each of the classical parameters generalizes that of Reed-Muller codes in the obvious way, but the state complexity does not. We conclude by comparing the asymptotic behavior of the state complexity of the duals of Berman codes with that of the obvious generalization of the state complexity of Reed-Muller codes.
ISSN:0018-9448
1557-9654
DOI:10.1109/18.904535