MISNAN-a physically based continuous MOSFET model for CAD applications
A circuit-level MOSFET model is presented which is based on the representation of current transport in a sheet channel in terms of the surface potential conditions at the source and drain boundaries. It is established that the surface potential solutions can be obtained by iterative means with negli...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computer-aided design of integrated circuits and systems 1991-12, Vol.10 (12), p.1512-1529 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A circuit-level MOSFET model is presented which is based on the representation of current transport in a sheet channel in terms of the surface potential conditions at the source and drain boundaries. It is established that the surface potential solutions can be obtained by iterative means with negligible computing time penalty. The model is scalable and results in continuous device characteristics under all operating conditions. High accuracy of the model is demonstrated over a wide range of device geometries and terminal voltages. The features of scalability, continuity, and high accuracy are attributed to physical representation of all important effects occurring in MOSFETs. Details on model implementation are provided and include modeling of carrier mobility, saturation region approximation, and representation of quasi-static charges in the device.< > |
---|---|
ISSN: | 0278-0070 1937-4151 |
DOI: | 10.1109/43.103501 |