The Keto‐Switched Photocatalysis of Reconstructed Covalent Organic Frameworks for Efficient Hydrogen Evolution
The keto‐switched photocatalysis of covalent organic frameworks (COFs) for efficient H2 evolution was reported for the first time by engineering, at a molecular level, the local structure and component of the skeletal building blocks. A series of imine‐linked BT‐COFs were synthesized by the Schiff‐b...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2023-09, Vol.62 (36), p.e202309026-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The keto‐switched photocatalysis of covalent organic frameworks (COFs) for efficient H2 evolution was reported for the first time by engineering, at a molecular level, the local structure and component of the skeletal building blocks. A series of imine‐linked BT‐COFs were synthesized by the Schiff‐base reaction of 1, 3, 5‐benzenetrialdehyde with diamines to demonstrate the structural reconstruction of enol to keto configurations by alkaline catalysis. The keto groups of the skeletal building blocks served as active injectors, where hot π‐electrons were provided to Pt nanoparticles (NPs) across a polyvinylpyrrolidone (PVP) insulting layer. The characterization results, together with density functional theory calculations, indicated clearly that the formation of keto‐injectors not only made the conduction band level more negative, but also led to an inhomogeneous charge distribution in the donor‐acceptor molecular building blocks to form a strong intramolecular built‐in electric field. As a result, visible‐light photocatalysis of TP‐COFs‐1 with one keto group in the skeletal building blocks was successfully enabled and achieved an impressive H2 evolution rate as high as 0.96 mmol g−1 h−1. Also, the photocatalytic H2 evolution rates of the reconstructed BT‐COFs‐2 and ‐3 with two and three keto‐injectors were significantly enhanced by alkaline post‐treatment.
Local reconstruction of imine‐linked covalent organic frameworks (COFs) unlocks visible‐light‐promoted photocatalytic H2 evolution. The keto units in skeletal building blocks are active injectors, where hot π‐electrons are emitted to Pt nanoparticles across a polyvinylpyrrolidone (PVP) insulting layer for reduction of protons to H2. A new benchmark H2 production rate of 53 mmol g−1 h−1 was achieved over β‐ketoenamine‐linked COFs. |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.202309026 |