Second order, Sturm–Liouville problems with asymmetric, superlinear nonlinearities II
We consider the nonlinear Sturm–Liouville problem −(p(x)u′(x))′+q(x)u(x)=f(x,u(x))+h(x), in (0,π),c 00u(0)+c 01u′(0)=0, c 10u(π)+c 11u′(π)=0, where p∈C 1[0,π], q∈C 0[0,π], with p( x)>0 for all x∈[0, π]; c i0 2+ c i1 2>0, i=0, 1 ; h∈ L 2(0, π). We suppose that f:[0,π]× R→ R is continuous and th...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2004-06, Vol.57 (7), p.905-916 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the nonlinear Sturm–Liouville problem
−(p(x)u′(x))′+q(x)u(x)=f(x,u(x))+h(x),
in
(0,π),c
00u(0)+c
01u′(0)=0,
c
10u(π)+c
11u′(π)=0,
where
p∈C
1[0,π],
q∈C
0[0,π],
with
p(
x)>0 for all
x∈[0,
π];
c
i0
2+
c
i1
2>0,
i=0,
1
;
h∈
L
2(0,
π).
We suppose that
f:[0,π]×
R→
R
is continuous and there exist increasing functions
ζ
l,
ζ
u:[0,∞)→
R
, and positive constants
A,
B, such that
lim
t→∞
ζ
l(t)=∞
and
−A+ζ
l(ξ)ξ⩽f(x,ξ)⩽A+ζ
u(ξ)ξ,
ξ⩾0,|f(x,ξ)|⩽A+B|ξ|,
ξ⩽0,
for all
x∈[0,
π] (thus the nonlinearity is superlinear as
u(
x)→∞, but linearly bounded as
u(
x)→−∞).
Existence and non-existence results are obtained for the above problem. Similar results have been obtained before for problems in which
f is linearly bounded as |
ξ|→∞, and these results have been expressed in terms of ‘half-eigenvalues’ of the problem. The results obtained here for the superlinear case are expressed in terms of certain asymptotes of these half-eigenvalues. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2004.03.021 |