A stabilized volume-averaging finite element method for flow in porous media and binary alloy solidification processes
A stabilized equal‐order velocity–pressure finite element algorithm is presented for the analysis of flow in porous media and in the solidification of binary alloys. The adopted governing macroscopic conservation equations of momentum, energy and species transport are derived from their microscopic...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2004-06, Vol.60 (6), p.1103-1138 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A stabilized equal‐order velocity–pressure finite element algorithm is presented for the analysis of flow in porous media and in the solidification of binary alloys. The adopted governing macroscopic conservation equations of momentum, energy and species transport are derived from their microscopic counterparts using the volume‐averaging method. The analysis is performed in a single domain with a fixed numerical grid. The fluid flow scheme developed includes SUPG (streamline‐upwind/Petrov–Galerkin), PSPG (pressure stabilizing/Petrov–Galerkin) and DSPG (Darcy stabilizing/Petrov–Galerkin) stabilization terms in a variable porosity medium. For the energy and species equations a classical SUPG‐based finite element method is employed. The developed algorithms were tested extensively with bilinear elements and were shown to perform stably and with nearly quadratic convergence in high Rayleigh number flows in varying porosity media. Examples are shown in natural and double diffusive convection in porous media and in the directional solidification of a binary‐alloy. Copyright © 2004 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0029-5981 1097-0207 |
DOI: | 10.1002/nme.998 |