Uptake, accumulation and translocation of traditional and novel organophosphate esters by rice seedlings in the presence of micro(nano)-polystyrene plastics: Effects of concentration and size of particles

Micro(nano)plastics (MNPs) and organophosphate esters (OPEs) are becoming ubiquitous as emerging pollutants. To data, the effects of MNPs on the uptake, accumulation and translocation of OPEs by rice plant are still unclear, especially for novel OPE species. In this study, the impacts of polystyrene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2023-11, Vol.898, p.165534-165534, Article 165534
Hauptverfasser: Xing, Liqun, Zhang, Yayun, Chang, Sheng, Tao, Liyue, Su, Guanyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Micro(nano)plastics (MNPs) and organophosphate esters (OPEs) are becoming ubiquitous as emerging pollutants. To data, the effects of MNPs on the uptake, accumulation and translocation of OPEs by rice plant are still unclear, especially for novel OPE species. In this study, the impacts of polystyrene MNPs of different sizes and concentrations on the uptake of eight OPEs (six traditional organophosphate triesters and two novel discovered aryl organophosphate triesters) by rice seedlings were investigated in hydroponic exposure experiments. The results showed that OPEs accumulated in a concentration-dependent manner in both the roots and shoots of rice seedlings. The impacts of MNPs on uptake by rice seedlings were concentration- and size-dependent by influencing the transpiration rate or activities of antioxidant enzymes. Especially, significant effects were usually found in exposure group of medium-size and high-concentration MNPs. MNPs had more obvious effects on OPE species with lower logKow in roots, whereas, more obvious effects on OPE species with higher logKow in shoots were observed. There was a significantly positive linear relationship between logTF and logKow (p 
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2023.165534