Multimodal decision-level fusion for person authentication

The use of clustering algorithms for decision-level data fusion is proposed. Person authentication results coming from several modalities (e.g., still image, speech), are combined by using fuzzy k-means (FKM) and fuzzy vector quantization (FVQ) algorithms, and a median radial basis function (MRBF) n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man and cybernetics. Part A, Systems and humans man and cybernetics. Part A, Systems and humans, 1999-11, Vol.29 (6), p.674-680
Hauptverfasser: Chatzis, V., Bors, A.G., Pitas, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The use of clustering algorithms for decision-level data fusion is proposed. Person authentication results coming from several modalities (e.g., still image, speech), are combined by using fuzzy k-means (FKM) and fuzzy vector quantization (FVQ) algorithms, and a median radial basis function (MRBF) network. The quality measure of the modalities data is used for fuzzification. Two modifications of the FKM and FVQ algorithms, based on a fuzzy vector distance definition, are proposed to handle the fuzzy data and utilize the quality measure. Simulations show that fuzzy clustering algorithms have better performance compared to the classical clustering algorithms and other known fusion algorithms. MRBF has better performance especially when two modalities are combined. Moreover, the use of the quality via the proposed modified algorithms increases the performance of the fusion system.
ISSN:1083-4427
1558-2426
DOI:10.1109/3468.798073