A prognostic biomarker NRG1 promotes U-87 MG glioblastoma cell malignancy by inhibiting autophagy via ERBB2/AKT/mTOR pathway

Glioblastoma (GBM) is the most common and aggressive primary brain malignancy. Studies have shown that autophagy-related (ATG) genes play important roles in regulating GBM malignancy. However, the mechanism still needs to be fully elucidated. Based on clinical and gene expression information of GBM...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular biochemistry 2023-09, Vol.124 (9), p.1273-1288
Hauptverfasser: Lin, Jia-Zhe, Lin, Nuan, Zhao, Wei-Jiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Glioblastoma (GBM) is the most common and aggressive primary brain malignancy. Studies have shown that autophagy-related (ATG) genes play important roles in regulating GBM malignancy. However, the mechanism still needs to be fully elucidated. Based on clinical and gene expression information of GBM patients downloaded from The The Cancer Genome Atlas database, Kaplan-Meier, univariate Cox regression, least absolute shrinkage and selection operator regression and multivariate Cox regression were applied to construct a risk signature for GBM prognosis, followed by validation using receiver operating characteristic analysis. Next, Cell Counting Kit-8, wound healing assay, flow cytometry, monodansyl cadaverine autophagy staining assay, immunofluorescence staining and western blot, either in the absence or presence of ERBB2/AKT/mTOR inhibitors, were carried out in GBM U87 cell line to explore molecular pathway underlying GBM malignancy. A three-ATG-gene signature (HIF1A, ITGA3, and NGR1) was constructed for GBM prognosis with the greatest contribution from NRG1. In vitro experiments showed that NRG1 promoted U87 cell migration and proliferation by inhibiting autophagy, and ERBB2/AKT/mTOR is a downstream pathway that mediates the autophagy-inhibitory effects of NRG1. We constructed an ATG gene prognostic model for GBM and demonstrated that NRG1 inhibited autophagy by activating ERBB2/AKT/mTOR, promoting GBM malignancy, thus providing new insights into the molecular contribution of autophagy in GBM malignancy.
ISSN:0730-2312
1097-4644
DOI:10.1002/jcb.30444