Systemic inflammation induced from remote extremity trauma is a critical driver of secondary brain injury
Blast exposure, commonly experienced by military personnel, can cause devastating life-threatening polysystem trauma. Despite considerable research efforts, the impact of the systemic inflammatory response after major trauma on secondary brain injury-inflammation is largely unknown. The aim of this...
Gespeichert in:
Veröffentlicht in: | Molecular and cellular neuroscience 2023-09, Vol.126, p.103878-103878, Article 103878 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Blast exposure, commonly experienced by military personnel, can cause devastating life-threatening polysystem trauma. Despite considerable research efforts, the impact of the systemic inflammatory response after major trauma on secondary brain injury-inflammation is largely unknown. The aim of this study was to identify markers underlying the susceptibility and early onset of neuroinflammation in three rat trauma models: (1) blast overpressure exposure (BOP), (2) complex extremity trauma (CET) involving femur fracture, crush injury, tourniquet-induced ischemia, and transfemoral amputation through the fracture site, and (3) BOP+CET. Six hours post-injury, intact brains were harvested and dissected to obtain biopsies from the prefrontal cortex, striatum, neocortex, hippocampus, amygdala, thalamus, hypothalamus, and cerebellum. Custom low-density microarray datasets were used to identify, interpret and visualize genes significant (p CET > BOP). The most pronounced differences in neuroinflammatory-neurodegenerative gene regulation were between blast-associated trauma (BOP, BOP+CET) and CET. Following BOP, there were few DEGs detected amongst all 8 brain regions, most were related to cytokines/chemokines and chemokine receptors, where PPI analysis revealed Il1b as a potential central hub gene. In contrast, CET led to a more excessive and diverse pro-neuroinflammatory reaction in which Il6 was identified as the central hub gene. Analysis of the of the BOP+CET dataset, revealed a more global heightened response (Cxcr2, Il1b, and Il6) as well as the expression of additional functional regulatory networks/hub genes (Ccl2, Ccl3, and Ccl4) which are known to play a critical role in the rapid recruitment and activation of immune cells via chemokine/cytokine signaling. These findings pro |
---|---|
ISSN: | 1044-7431 1095-9327 |
DOI: | 10.1016/j.mcn.2023.103878 |