In vitro inactivation of SARS-CoV-2 by ozonated water via novel hand hygiene device
The COVID-19 pandemic has heightened awareness of the need for novel surface disinfectants and hand-hygiene modalities. Ozone gas is an effective surface disinfectant, but toxicity limits its use in human applications. Ozonated water is a safer means to use ozone for disinfection, especially for hum...
Gespeichert in:
Veröffentlicht in: | Journal of applied microbiology 2023-07, Vol.134 (7) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The COVID-19 pandemic has heightened awareness of the need for novel surface disinfectants and hand-hygiene modalities. Ozone gas is an effective surface disinfectant, but toxicity limits its use in human applications. Ozonated water is a safer means to use ozone for disinfection, especially for human antisepsis. However, there are little data available regarding the effectiveness of ozonated water in eliminating severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2).
This study utilizes a novel hand hygiene device that produces a stable ozone concentration of 0.5 +/-0.1 ppm in water and applies it using a proprietary spray that controls droplet size, velocity, and direction. The Device was used to apply ozonated water to a known quantity of SARS-CoV-2 Delta Variant viral particles on a non-porous surface (glass) for seven seconds. Post-exposure growth was compared to the unexposed matched control utilizing the Spearman-Karber method. Compared to control, ozonated water decreased SARS-CoV-2 viral growth by a mean log10 reduction of 4.33, or >99.99% reduction.
These results suggest that the ozonated water, when applied by a spray hand hygiene device, is highly effective at surface disinfection of SARS-CoV-2. |
---|---|
ISSN: | 1365-2672 1365-2672 |
DOI: | 10.1093/jambio/lxad147 |