Human Adipose-Derived Mesenchymal Stem Cell-Secreted Extracellular Matrix Coating on a Woven Nanotextile Vascular Patch for Improved Endothelial Cell Response

Biomedical implants possessing the structural and functional characteristics of extracellular matrix (ECM) are pivotal for vascular applications. This study investigated the potential of recreating a natural ECM-like structural and functional environment on the surface of biodegradable polymeric nan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied bio materials 2023-08, Vol.6 (8), p.3143-3152
Hauptverfasser: Gopal, Kavitha, Nandakumar, Niji, C R, Reshmi, Babu, Rosebin, Nair, Shantikumar V., Sathy, Binulal N., Menon, Deepthy
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biomedical implants possessing the structural and functional characteristics of extracellular matrix (ECM) are pivotal for vascular applications. This study investigated the potential of recreating a natural ECM-like structural and functional environment on the surface of biodegradable polymeric nanotextiles for vascular implants. Human adipose-derived mesenchymal stem cells (MSCs) were grown on a suitably engineered polycaprolactone (PCL) nanofibrous textile and were allowed to modify its surface through the deposition of MSC-specific ECM. This surface-modified nanotextile showed mechanical characteristics and functionality appropriate for vascular patch material. The uniformity of ECM coating significantly improved the viability, proliferation, and migration of human endothelial cells compared to bare and xenogeneic collagen-coated PCL nanotextile patches. Thus, a polymeric nanotextile, which is surface modified using MSC-driven ECM, provided a rapid and improved endothelialization, thereby suggesting its potential for vascular patch applications.
ISSN:2576-6422
2576-6422
DOI:10.1021/acsabm.3c00156