Simulation experiments of the effect of space environment on bacteriophage and DNA thin films

The main goal of PUR experiment (phage and uracil response) is to examine and quantify the effect of specific space conditions on nucleic acid models. To achieve this an improved method was elaborated for the preparation of DNA and bacteriophage thin films. The homogeneity of the films was controlle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in space research 2004, Vol.33 (8), p.1306-1310
Hauptverfasser: Fekete, A., Rontó, Gy, Hegedüs, M., Módos, K., Bérces, A., Kovács, G., Lammer, H., Panitz, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main goal of PUR experiment (phage and uracil response) is to examine and quantify the effect of specific space conditions on nucleic acid models. To achieve this an improved method was elaborated for the preparation of DNA and bacteriophage thin films. The homogeneity of the films was controlled by UV spectroscopy and microscopy. To provide experimental evidence for the hypothesis that interplanetary transfer of the genetic material is possible, phage T7 and isolated T7 DNA thin films have been exposed to selected space conditions: intense UVC radiation ( λ=254 nm) and high vacuum (10 −4 Pa). The effects of DNA hydration, conformation and packing on UV radiation damage were examined. Characteristic changes in the absorption spectrum, in the electrophoretic pattern of DNA and the decrease of the amount of PCR products have been detected indicating the photodamage of isolated and intraphage DNA.
ISSN:0273-1177
1879-1948
DOI:10.1016/j.asr.2003.08.037