A Single Test Protocol to Establish the Full Spectrum of Exercise Intensity Prescription

We aimed to test the extended capabilities of the SRS protocol by validating its capacity to predict the power outputs for targeted metabolic rates (V̇O 2 ) and time-to-task failure ( Tlim ) within the heavy- and severe-intensity domain, respectively. Fourteen young individuals completed (i) an SRS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medicine and science in sports and exercise 2023-12, Vol.55 (12), p.2271-2280
Hauptverfasser: Iannetta, Danilo, Mackie, Mary Z., Keir, Daniel A., Murias, Juan M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We aimed to test the extended capabilities of the SRS protocol by validating its capacity to predict the power outputs for targeted metabolic rates (V̇O 2 ) and time-to-task failure ( Tlim ) within the heavy- and severe-intensity domain, respectively. Fourteen young individuals completed (i) an SRS protocol from which the power outputs at GET and RCP (RCP CORR ), and the work accruable above RCP CORR , defined as W ' RAMP , were derived; (ii) one heavy-intensity bout at a power output predicted to elicit a targeted V̇O 2 equidistant from GET and RCP; and (iii) four severe-intensity trials at power outputs predicted to elicit targeted Tlim at minutes 2.5, 5, 10, and 13. These severe-intensity trials were also used to compute the constant-load-derived critical power and W ´ ( W ' CONSTANT ). Targeted (2.41 ± 0.52 L·min -1 ) and measured (2.43 ± 0.52 L·min -1 ) V̇O 2 at the identified heavy-intensity power output (162 ± 43 W) were not different ( P = 0.71) and substantially concordant (CCC = 0.95). Likewise, targeted and measured Tlim for the four identified severe-intensity power outputs were not different ( P > 0.05), and the aggregated coefficient of variation was 10.7% ± 8.9%. The derived power outputs at RCP CORR (192 ± 53 W) and critical power (193 ± 53 W) were not different ( P = 0.65) and highly concordant (CCC = 0.99). There were also no differences between W ' RAMP and W ' CONSTANT ( P = 0.51). The SRS protocol can accurately predict power outputs to elicit discrete metabolic rates and exercise durations, thus providing, with time efficiency, a high precision for the control of the metabolic stimulus during exercise.
ISSN:0195-9131
1530-0315
DOI:10.1249/MSS.0000000000003249