One-pot synthesis of pillar[5]quinone-amine polymer coated silica as stationary phase for high-performance liquid chromatography
To expand the application of pillararene in chromatographic separation, we designed and fabricated a pillar[5]quinone-amine polymer coated silica through quinone-amine reaction by facile one-pot synthesis method, which was applied as a stationary phase for high-performance liquid chromatography. Sep...
Gespeichert in:
Veröffentlicht in: | Journal of separation science 2023-09, Vol.46 (18), p.e2300269-e2300269 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To expand the application of pillararene in chromatographic separation, we designed and fabricated a pillar[5]quinone-amine polymer coated silica through quinone-amine reaction by facile one-pot synthesis method, which was applied as a stationary phase for high-performance liquid chromatography. Separation of hydrophobic compounds, hydrophilic compounds, halogenated aromatic compounds, and 11 aromatic positional isomers was achieved successfully in this stationary phase. Reverse-phase separation mode and hydrophilic-interaction separation mode were proved to exist, indicating the potential application of the mix-mode stationary phase. Studies of chromatographic retention behavior and molecular simulation showed that multiple interactions might play an important role in the separation process, including hydrophobic interaction, hydrogen-bonding interaction, aromatic π-π interaction, electron donor-acceptor interaction, and host-guest interaction. Column repeatability and stability were tested, which showed relative standard deviations of retention time less than 0.2% for continuous 11 injections, and the durability relative standard deviations of retention time were less than 0.91% after 90 days. This novel design strategy would broaden the application of pillararene-based covalent organic polymer in chromatography and separation science. |
---|---|
ISSN: | 1615-9306 1615-9314 |
DOI: | 10.1002/jssc.202300269 |