A positively tuned voltage indicator for extended electrical recordings in the brain

Genetically encoded voltage indicators (GEVIs) enable optical recording of electrical signals in the brain, providing subthreshold sensitivity and temporal resolution not possible with calcium indicators. However, one- and two-photon voltage imaging over prolonged periods with the same GEVI has not...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods 2023-07, Vol.20 (7), p.1104-1113
Hauptverfasser: Evans, S. Wenceslao, Shi, Dong-Qing, Chavarha, Mariya, Plitt, Mark H., Taxidis, Jiannis, Madruga, Blake, Fan, Jiang Lan, Hwang, Fuu-Jiun, van Keulen, Siri C., Suomivuori, Carl-Mikael, Pang, Michelle M., Su, Sharon, Lee, Sungmoo, Hao, Yukun A., Zhang, Guofeng, Jiang, Dongyun, Pradhan, Lagnajeet, Roth, Richard H., Liu, Yu, Dorian, Conor C., Reese, Austin L., Negrean, Adrian, Losonczy, Attila, Makinson, Christopher D., Wang, Sui, Clandinin, Thomas R., Dror, Ron O., Ding, Jun B., Ji, Na, Golshani, Peyman, Giocomo, Lisa M., Bi, Guo-Qiang, Lin, Michael Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Genetically encoded voltage indicators (GEVIs) enable optical recording of electrical signals in the brain, providing subthreshold sensitivity and temporal resolution not possible with calcium indicators. However, one- and two-photon voltage imaging over prolonged periods with the same GEVI has not yet been demonstrated. Here, we report engineering of ASAP family GEVIs to enhance photostability by inversion of the fluorescence–voltage relationship. Two of the resulting GEVIs, ASAP4b and ASAP4e, respond to 100-mV depolarizations with ≥180% fluorescence increases, compared with the 50% fluorescence decrease of the parental ASAP3. With standard microscopy equipment, ASAP4e enables single-trial detection of spikes in mice over the course of minutes. Unlike GEVIs previously used for one-photon voltage recordings, ASAP4b and ASAP4e also perform well under two-photon illumination. By imaging voltage and calcium simultaneously, we show that ASAP4b and ASAP4e can identify place cells and detect voltage spikes with better temporal resolution than commonly used calcium indicators. Thus, ASAP4b and ASAP4e extend the capabilities of voltage imaging to standard one- and two-photon microscopes while improving the duration of voltage recordings. The ASAP4 family of genetically encoded voltage indicators allows recording of action potentials and subthreshold activity with either one- or two-photon microscopy over extended periods of time.
ISSN:1548-7091
1548-7105
1548-7105
DOI:10.1038/s41592-023-01913-z