Learning probabilistic RAM nets using VLSI structures

Hardware-realizable learning probabilistic RAMs (pRAMs) which implement local reinforcement rules utilizing synaptic rather than threshold noise in the stochastic search procedure are described. The design allows for both global and local rewards and penalties (in this latter case implementing a mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computers 1992-12, Vol.41 (12), p.1552-1561
Hauptverfasser: Clarkson, T.G., Gorse, D., Taylor, J.G., Ng, C.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hardware-realizable learning probabilistic RAMs (pRAMs) which implement local reinforcement rules utilizing synaptic rather than threshold noise in the stochastic search procedure are described. The design allows for both global and local rewards and penalties (in this latter case implementing a modified version of backpropagation). The architecture allows for serial updating of the weights of a pRAM net according to a reward/penalty learning rule. It is possible to generate a new set of pRAM outputs at least every 100 mu s, which is faster than the response time of biological neurons.< >
ISSN:0018-9340
1557-9956
DOI:10.1109/12.214663