Learning with case-injected genetic algorithms
This paper presents a new approach to acquiring and using problem specific knowledge during a genetic algorithm (GA) search. A GA augmented with a case-based memory of past problem solving attempts learns to obtain better performance over time on sets of similar problems. Rather than starting anew o...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on evolutionary computation 2004-08, Vol.8 (4), p.316-328 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a new approach to acquiring and using problem specific knowledge during a genetic algorithm (GA) search. A GA augmented with a case-based memory of past problem solving attempts learns to obtain better performance over time on sets of similar problems. Rather than starting anew on each problem, we periodically inject a GA's population with appropriate intermediate solutions to similar previously solved problems. Perhaps, counterintuitively, simply injecting solutions to previously solved problems does not produce very good results. We provide a framework for evaluating this GA-based machine-learning system and show experimental results on a set of design and optimization problems. These results demonstrate the performance gains from our approach and indicate that our system learns to take less time to provide quality solutions to a new problem as it gains experience from solving other similar problems in design and optimization. |
---|---|
ISSN: | 1089-778X 1941-0026 |
DOI: | 10.1109/TEVC.2004.823466 |