Learning with case-injected genetic algorithms

This paper presents a new approach to acquiring and using problem specific knowledge during a genetic algorithm (GA) search. A GA augmented with a case-based memory of past problem solving attempts learns to obtain better performance over time on sets of similar problems. Rather than starting anew o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation 2004-08, Vol.8 (4), p.316-328
Hauptverfasser: Louis, S.J., McDonnell, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a new approach to acquiring and using problem specific knowledge during a genetic algorithm (GA) search. A GA augmented with a case-based memory of past problem solving attempts learns to obtain better performance over time on sets of similar problems. Rather than starting anew on each problem, we periodically inject a GA's population with appropriate intermediate solutions to similar previously solved problems. Perhaps, counterintuitively, simply injecting solutions to previously solved problems does not produce very good results. We provide a framework for evaluating this GA-based machine-learning system and show experimental results on a set of design and optimization problems. These results demonstrate the performance gains from our approach and indicate that our system learns to take less time to provide quality solutions to a new problem as it gains experience from solving other similar problems in design and optimization.
ISSN:1089-778X
1941-0026
DOI:10.1109/TEVC.2004.823466