Lifelong Generative Adversarial Autoencoder

Lifelong learning describes an ability that enables humans to continually acquire and learn new information without forgetting. This capability, common to humans and animals, has lately been identified as an essential function for an artificial intelligence system aiming to learn continuously from a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2024-10, Vol.35 (10), p.14684-14698
Hauptverfasser: Ye, Fei, Bors, Adrian G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lifelong learning describes an ability that enables humans to continually acquire and learn new information without forgetting. This capability, common to humans and animals, has lately been identified as an essential function for an artificial intelligence system aiming to learn continuously from a stream of data during a certain period of time. However, modern neural networks suffer from degenerated performance when learning multiple domains sequentially and fail to recognize past learned tasks after being retrained. This corresponds to catastrophic forgetting and is ultimately induced by replacing the parameters associated with previously learned tasks with new values. One approach in lifelong learning is the generative replay mechanism (GRM) that trains a powerful generator as the generative replay network, implemented by a variational autoencoder (VAE) or a generative adversarial network (GAN). In this article, we study the forgetting behavior of GRM-based learning systems by developing a new theoretical framework in which the forgetting process is expressed as an increase in the model's risk during the training. Although many recent attempts have provided high-quality generative replay samples by using GANs, they are limited to mainly downstream tasks due to the lack of inference. Inspired by the theoretical analysis while aiming to address the drawbacks of existing approaches, we propose the lifelong generative adversarial autoencoder (LGAA). LGAA consists of a generative replay network and three inference models, each addressing the inference of a different type of latent variable. The experimental results show that LGAA learns novel visual concepts without forgetting and can be applied to a wide range of downstream tasks.
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2023.3281091