A light-responsive wound dressing hydrogel: Gelatin based self-healing interpenetrated network with metal-ligand interaction by ferric citrate

Interpenetrated network (IPN) hydrogels with desired mechanical properties were prepared based on gelatin. A copolymer of dimethyl aminoethyl methacrylate (DMAEMA) with 2-Acrylamido-2-methylpropane sulfonic acid (AMPS) in gelatin was chemically cross-linked with methylene bis acrylamide (MBA) to for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of photochemistry and photobiology. B, Biology Biology, 2023-08, Vol.245, p.112750-112750, Article 112750
Hauptverfasser: Pourbadiei, Behzad, Monghari, Mohammd Ali Aghajani, Khorasani, Hamidreza Mohajeri, Pourjavadi, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Interpenetrated network (IPN) hydrogels with desired mechanical properties were prepared based on gelatin. A copolymer of dimethyl aminoethyl methacrylate (DMAEMA) with 2-Acrylamido-2-methylpropane sulfonic acid (AMPS) in gelatin was chemically cross-linked with methylene bis acrylamide (MBA) to form a semi-IPN hydrogel. Also, IPN hydrogel is fabricated from the AMPS-co-DMAEMA and gelatin in the presence of ferric ions with both chemical and physical cross-linkers. According to the compression test, the metal-ligand interaction has a remarkable impact on the mechanical strength of hydrogel. Ferric ions caused a decrease in the pores size confirmed by the SEM images of hydrogels, resulting in preserving its mechanical stability during the swelling test due to a more robust structure of hydrogel. Ferric to ferrous ions reduction is observed under visible light irradiation, which results in a light-sensitive hydrogel with a higher rate of biodegradation compared to semi-IPN hydrogels. MTT assay results implied that the synthesized hydrogels are non-toxic for the L-929 cell line. Also, for more detailed investigations, histological studies are conducted as in vivo tests. With regards to the improvements of mechanical properties harnessed in IPN hydrogels by ferric ions along with the extraordinary self-healing capability, IPNs would be considered an appropriate option for tissue engineering. •Ferric citrate ions as light-sensitive crosslinkers for IPN hydrogels•Biodegradable hydrogels with self-healing and escalated mechanical strength due to tridentate metal-ligand interactions•Non-toxic and cell adhesive hydrogels as suitable candidates for wound dressing materials•Acceleration of scaffold degradation by daily life light irradiation
ISSN:1011-1344
1873-2682
DOI:10.1016/j.jphotobiol.2023.112750