Aerodynamic blade row interactions in an axial compressor. II. Unsteady profile pressure distribution and blade forces

This two-part paper presents experimental investigations of unsteady aerodynamic blade row interactions in the first stage of the four-stage low-speed research compressor of Dresden. Both the unsteady boundary layer development and the unsteady pressure distribution of the stator blades are investig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of turbomachinery 2004-01, Vol.126 (1), p.45-51
Hauptverfasser: Mailach, R, Vogeler, K
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This two-part paper presents experimental investigations of unsteady aerodynamic blade row interactions in the first stage of the four-stage low-speed research compressor of Dresden. Both the unsteady boundary layer development and the unsteady pressure distribution of the stator blades are investigated for several operating points. The measurements were carried out on pressure side and suction side at midspan. In Part II of the paper the investigations of the unsteady pressure distribution on the stator blades are presented. The experiments were carried out using piezo resistive miniature pressure sensors, which are embedded into the pressure and suction side surface of a single blade. The unsteady pressure distribution on the blade is analyzed for the design point and an operating point near the stability limit. The investigations show that it is strongly influenced by both the incoming wakes and the potential flow field of the downstream rotor blade row. If a disturbance arrives the leading edge or the trailing edge of the blade the pressure changes nearly simultaneously along the blade chord. Thus the unsteady profile pressure distribution is independent of the wake propagation within the blade passage. A phase shift of the reaction on pressure and suction side is observed. The unsteady response of the boundary layer and the profile pressure distribution is compared. Based on the unsteady pressure distribution the unsteady pressure forces of the blades are calculated and discussed.
ISSN:0889-504X
DOI:10.1115/1.1649742