Pseudospectral knotting methods for solving optimal control problems

A class of computational methods for solving a wide variety of optimal control problems is presented; these problems include nonsmooth, nonlinear, switched optimal control problems, as well as standard multiphase problems. Methods are based on pseudospectral approximations of the differential constr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of guidance, control, and dynamics control, and dynamics, 2004-05, Vol.27 (3), p.397-405
Hauptverfasser: ROSS, I. Michael, FAHROO, Fariba
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A class of computational methods for solving a wide variety of optimal control problems is presented; these problems include nonsmooth, nonlinear, switched optimal control problems, as well as standard multiphase problems. Methods are based on pseudospectral approximations of the differential constraints that are assumed to be given in the form of controlled differential inclusions including the usual vector field and differential-algebraic forms. Discontinuities and switches in states, controls, cost functional, dynamic constraints, and various other mappings associated with the generalized Bolza problem are allowed by the concept of pseudospectral (PS) knots. Information across switches and corners is passed in the form of discrete event conditions localized at the PS knots. The optimal control problem is approximated to a structured sparse mathematical programming problem. The discretized problem is solved using off-the-shelf solvers that include sequential quadratic programming and interior point methods. Two examples that demonstrate the concept of hard and soft knots are presented.
ISSN:0731-5090
1533-3884
DOI:10.2514/1.3426