Impacts of land-use change on carbon dynamics in China's coastal wetlands
The impact of land-use and land-cover change (LULCC) on ecosystem carbon (C) dynamics has been previously documented at local and global scales, but uncertainty persists for coastal wetlands due to geographical variability and field data limitations. Field-based assessments of plant and soil C conte...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2023-09, Vol.890, p.164206-164206, Article 164206 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The impact of land-use and land-cover change (LULCC) on ecosystem carbon (C) dynamics has been previously documented at local and global scales, but uncertainty persists for coastal wetlands due to geographical variability and field data limitations. Field-based assessments of plant and soil C contents and stocks of various LULCC types were conducted in nine regions along the coastline of China (21°–40°N). These regions cover natural coastal wetlands (NWs, including salt marshes and mangroves) and former wetlands converted to different LULCC types, including reclaimed wetlands (RWs), dry farmlands (DFs), paddy fields (PFs) and aquaculture ponds (APs). The results showed that LULCC generally decreased the C contents and stocks of the plant–soil system by 29.6 % ± 2.5 % and 40.4 % ± 9.2 %, respectively, while it slightly increased the soil inorganic C contents and stocks. Wetlands converted to APs and RWs lost greater ecosystem organic C stocks (EOC, sum of plants and top 30 cm of soil organic C stocks) than other LULCC types. The annual potential CO2 emissions estimated from EOC loss depended on the LULCC type, with an average emission of 7.92 ± 2.94 Mg CO2-eq ha−1 yr−1. The change rate of EOC in all LULCC types showed a significantly deceasing trend with increasing latitude (p |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2023.164206 |