Effects of cryopreservation in the presence of Natural Deep Eutectic Solvents (NADESs) on sperm parameters

Natural Deep Eutectic Solvents (NADESs) are being considered as a potential alternative to traditional cryoprotective agents (CPAs) in sperm freezing. The study aimed to assess the effects of NADESs as a CPA on human sperm parameters. A total of 32 normozoospermic semen samples were collected from t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cryobiology 2023-09, Vol.112, p.104550-104550, Article 104550
Hauptverfasser: Saadat Maryan, Haniyeh, Ghasemian, Fatemeh, Bahadori, Mohammad Hadi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Natural Deep Eutectic Solvents (NADESs) are being considered as a potential alternative to traditional cryoprotective agents (CPAs) in sperm freezing. The study aimed to assess the effects of NADESs as a CPA on human sperm parameters. A total of 32 normozoospermic semen samples were collected from the Alzahra infertility treatment center (Iran) between July 2021 and September 2022. The samples were categorized into eight different groups: 1) a control (nonfrozen), and groups frozen with 2) SpermFreeze Solution, 3) ChX (Choline chloride and Xylitol), 4) ChS (Choline chloride and D-sorbitol), 5) ChG (Choline chloride and Glucose), 6) ChU (Choline chloride and Urea), 7) EtP (Ethylene glycol and l-proline), and 8) GlyP (Glycerol and l-proline). The study also analyzed the quality of sperm parameters, such as chromatin condensation and integrity, acrosome integrity, and survival, along with the expression of some genes that affect sperm fertility (TRPV1, TRPV4, SPACA3, and OGG1). The study found there were notable variations in sperm parameters (such as viability, chromatin condensation and integrity, and acrosome integrity) among frozen groups with some NADESs compared to the SpermFreeze Solution and control groups (P 
ISSN:0011-2240
1090-2392
DOI:10.1016/j.cryobiol.2023.05.007