Non-thermal disruption of β-adrenergic receptor-activated Ca2+ signalling and apoptosis in human ES-derived cardiomyocytes by microwave electric fields at 2.4 GHz

The ubiquity of wireless electronic-device connectivity has seen microwaves emerge as one of the fastest growing forms of electromagnetic exposure. A growing evidence-base refutes the claim that wireless technologies pose no risk to human health at current safety levels designed to limit thermal (he...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2023-06, Vol.661, p.89-98
Hauptverfasser: Williams, Catrin F., Hather, Catherine, Conteh, Jainaba Sallah, Zhang, Jingjing, Popa, Raluca G., Owen, Anthony W., Jonas, Cara L., Choi, Heungjae, Daniel, Rhian M., Lloyd, David, Porch, Adrian, George, Christopher H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ubiquity of wireless electronic-device connectivity has seen microwaves emerge as one of the fastest growing forms of electromagnetic exposure. A growing evidence-base refutes the claim that wireless technologies pose no risk to human health at current safety levels designed to limit thermal (heating) effects. The potential impact of non-thermal effects of microwave exposure, especially in electrically-excitable tissues (e.g., heart), remains controversial. We exposed human embryonic stem-cell derived cardiomyocytes (CM), under baseline and beta-adrenergic receptor (β-AR)-stimulated conditions, to microwaves at 2.4 GHz, a frequency used extensively in wireless communication (e.g., 4G, Bluetooth™ and WiFi). To control for any effect of sample heating, experiments were done in CM subjected to matched rates of direct heating or CM maintained at 37 °C. Detailed profiling of the temporal and amplitude features of Ca2+ signalling in CM under these experimental conditions was reconciled with the extent and spatial clustering of apoptosis. The data show that exposure of CM to 2.4 GHz EMF eliminated the normal Ca2+ signalling response to β-AR stimulation and provoked spatially-clustered apoptosis. This is first evidence that non-thermal effects of 2.4 GHz microwaves might have profound effects on human CM function, responsiveness to activation, and survival. •Microwaves at 2.4 GHz are fundamental to today's wireless communication (e.g., 4G, WiFi).•The non-thermal effects of 2.4 GHz microwaves on biological systems are controversial.•2.4 GHz microwaves eliminated the response of human heart cells to β-AR stimulation.•Microwave-disrupted calcium signalling promoted spatially-clustered apoptosis.•The destructive effects of 2.4 GHz microwaves were mediated by non-thermal mechanisms.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2023.04.038