Simultaneous adsorption of Cd and As by a novel coal gasification slag based composite: Characterization and application in soil remediation

Cadmium (Cd) and arsenic (As) co-contamination has become increasingly serious in China agricultural soil due to rapid industrialization and urbanization. The opposite geochemical behaviors of Cd and As pose huge challenges for developing a material for their simultaneous immobilization in soils. Co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2023-07, Vol.882, p.163374-163374, Article 163374
Hauptverfasser: Zhou, Changzhi, Wang, Junhuan, Wang, Qian, Leng, Zheng, Geng, Yue, Sun, Shurui, Hou, Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cadmium (Cd) and arsenic (As) co-contamination has become increasingly serious in China agricultural soil due to rapid industrialization and urbanization. The opposite geochemical behaviors of Cd and As pose huge challenges for developing a material for their simultaneous immobilization in soils. Coal gasification slag (CGS) as a by-product of coal gasification process, is always dumped into a local landfill, which has a negative impact on environment. Few reports have been available on applying CGS as a material to immobilize simultaneously multiple soil heavy metals. A series of iron-modified coal gasification slag (IGS) composites IGS3/5/7/9/11 (with different pH values) were synthesized by alkali fusion and iron impregnation. After modification, carboxyl groups were activated, and Fe was successfully loaded onto the surface of IGS in the form of FeO and Fe2O3. The IGS7 exhibited the best adsorption capacity with the maximum Cd and As adsorption capacity of 42.72 mg/g and 35.29 mg/g, respectively. The Cd was mainly adsorbed through electrostatic attraction and precipitation, while the As through complexation with iron (hydr)oxides. IGS7 significantly reduced the bioavailability of Cd and As in soil with Cd bioavailability reduced from 1.17 mg/kg to 0.69 mg/kg and As bioavailability reduced from 10.59 mg/kg to 6.86 mg/kg at 1 % IGS7 addition. The Cd and As were all transformed to more stable fractions after IGS7 addition. The acid soluble and reducible Cd fractions were transformed into oxidizable and residual Cd fractions, and the non-specifically and specifically adsorbed As fractions were transformed to amorphous iron oxide-bound As fraction. This study provides valuable references for the application of CGS to the remediation of Cd and As co-contaminated soil. [Display omitted] •CGS based composites (IGS) were synthesized via alkali fusion and ion impregnation.•The modification process introduced carboxyl group and iron oxide successfully.•The IGS has the excellent adsorption capacity for Cd and As.•The IGS7 can simultaneously reduce the bioavailability of Cd and As in soil.•The IGS7 leads the Cd and As transformed to a more stable phase.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2023.163374